## PGRN-RIKEN-MA.27 Collaboration

Jim Ingle

for the

**Mayo PGRN** 

**Indiana PGRN** 

**NCIC CTG** 

**PGRN-TBCI Summit** 

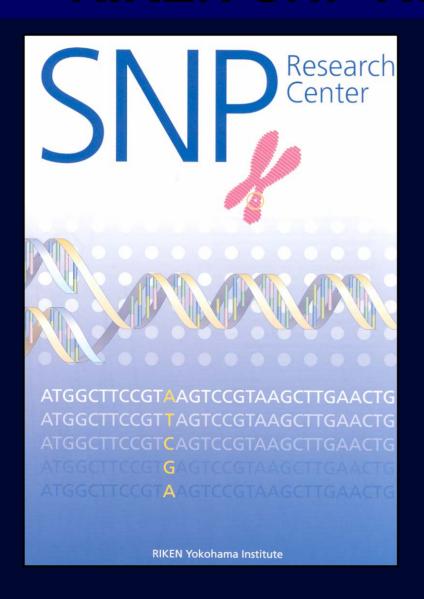
March 31, 2008

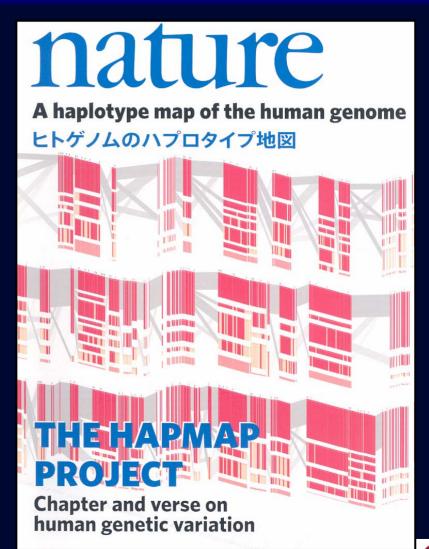


## PGRN-RIKEN-MA.27 Coalition Members

- Mayo PGRN
  - DickWeinshilboum
  - Jim Ingle
  - Dan Schaid
  - Matt Ellis
- Indiana PGRN
  - Dave Flockhart
  - Vered Stearns

- NCIC CTG
  - Joe Pater
  - Judy-Anne Chapman
  - Kathy Pritchard
  - Cathy Elliott
  - Paul Goss
- RIKEN
  - Yusuke Nakamura
  - Taisei Mushiroda





#### RIKEN (Rikagaku Kenkyūsho (理化学研究所)





## **RIKEN SNP Research Center**











# **Aromatase Inhibitor Pharmacogenomics**

#### **PGRN Proposal to RIKEN:**

Create a collaboration between RIKEN and the NIH-sponsored PGRN to perform GWASs using the NCI AI trial MA.27 to complement and extend a PGRN multi-institution GWAS study of anastrozole pharmacogenomics in order to encompass clinically relevant phenotypes



# A Randomized Phase III Trial of Exemestane Versus Anastrozole in Postmenopausal Women with Receptor Positive Primary Breast Cancer The Breast Cancer Intergroup of North America

MA.27 / IBCSG 30-04 NCIC CTG / CTSU / IBCSG

Study Chair: Paul Goss Study Co-Chairs:

George Sledge (ECOG) James Ingle (NCCTG)
Tom Budd (SWOG) Matt Ellis (CALGB)
Manuela Rabaglio (IBCSG)

Joe Pater (NCIC CTG Physician Coordinator)

## MA.27 Resected Early Stage Breast Cancer

NCIC CTG; NCCTG; CALGB; SWOG; ECOG; IBCSG

n = 7520

postmenopausal receptor-positive women



Treatment is for 5 years or until recurrence / second malignancy is documented



#### **MA.27 Current Status**

- Activated June 2003
- Current accrual 7469
- Target accrual: 7520 (remains open to complete accrual to Bone and Breast Density sub-studies)
- Median follow-up: 2.0 years
- Biospecimens collection

Blood for DNA: 5299



## **PGRN-RIKEN Discussions**

 Perform 2 genome wide association studies in collaboration with RIKEN on patients from MA.27 utilizing as phenotypes

**Breast cancer events** 

Adverse events



# MA.27 GWAS Disease Recurrence Power Calculations

 Case Control: Estimate 600 patients with a breast cancer event by the end of 2009 plus 1200 matched controls (without event)

#### Frequency of carrying the risk allele

| Odds<br>Ratio | 5%  | 10% | 20%  | 50%  |
|---------------|-----|-----|------|------|
| 1.50          | 12% | 32% | 63%  | 82%  |
| 2.00          | 66% | 95% | 100% | 100% |



## MA.27 Adverse Events

- Musculoskeletal events
  - Grade 3, 4: 350
  - Grade 2 and a few grade 1 who went off treatment for this toxicity: 219



## MA.27 GWAS Grade 3 and 4 Musculoskeletal AEs

#### **Power Calculations**

Case Control: 1 patient with 2 controls

Frequency of carrying the risk allele

| Odds Ratio | 5%   | 10%  | 20%  |
|------------|------|------|------|
| 2.5        | 0.05 | 0.38 | 0.86 |
| 3.0        | 0.23 | 0.82 | 0.99 |
| 4.0        | 0.83 | 0.99 | 1.00 |



### **Final Agreement**

 Start with a GWAS examining grade 3 and 4 musculoskeletal events during the fiscal year beginning April 1, 2008



#### **Current Status**

- Developing letter of intent for submission to Correlative Sciences Committee of TBCI (goal: April)
- Fortnightly teleconferences of the Coalition.
  - Finalizing design
  - Finalizing cases and controls
- Ongoing communications with RIKEN



## **Mayo PGRN and NCCTG**



#### Mayo Clinic serves as research base for NCCTG AK NCCTG has 368 treating locations in 29 states as well as Canada & Puerto Rico Saskatchewan 2 WA MT 6 ND 25 OR MN MA 5 W MI JD NY SD 38 RI W\1 12 17 OH-47 11 IA • 23° NE DE NV UŢ 6 10 MD 15 2<sub>MO</sub> CO 19 KS. 46 DC KY CA 1 NC 2 3 TN 3 SC OK AZ NM AR AL MS 28 2 2 TX LA 6 3 **PGRN** Rev 8-9-06

# Mayo PGRN-NCCTG Genomics Consortium

**Steering Committee** 

James N. Ingle, MD Director, Mayo Breast SPORE

Edith A. Perez, MD
Chair, NCCTG Breast Committee

Richard M. Weinshilboum, MD PI, Mayo PGRN



# Mayo PGRN-NCCTG Genomics Consortium

#### **Areas of Laboratory Research**

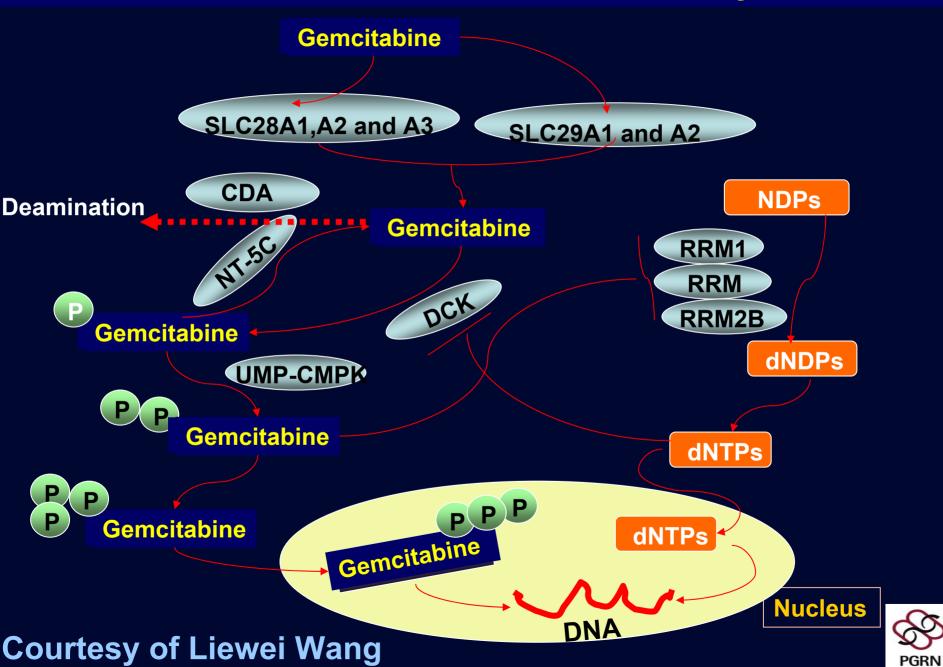
- Tamoxifen
- Taxanes
- Anthracyclines
- Trastuzumab
- Gemcitabine
- Cyclophosphamide
- Lapatinib
- Platin drugs



## Human Variation Panel Cell Lines

- Genome-wide SNP data
   1 million SNPs/cell line
- Expression array data
   54,000 probe sets/cell line
- 96 CA Cell Lines
- 96 HCA Cell Lines
- 96 AA Cell Lines

- Exon array data1.4 million probe sets/cell line
- 2.5 million genomic data points/cell line
- 720,000,000 genomic data points total for 288 cell lines in every experiment

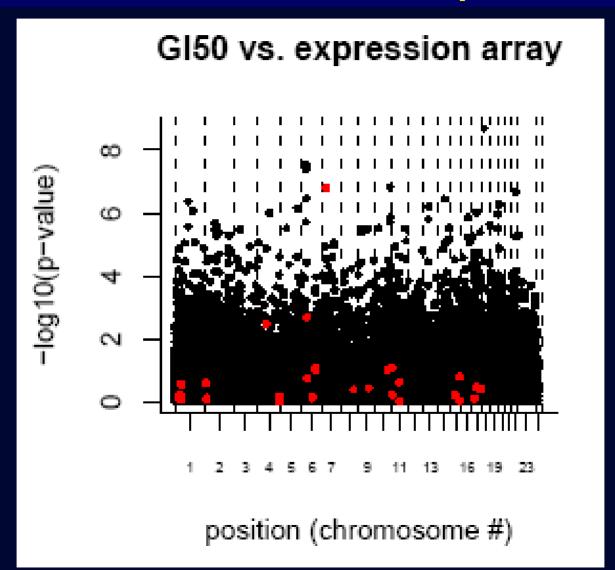



#### Gemcitabine

- Gemcitabine is widely used to treat solid tumors including pancreatic cancer, ovarian cancer, breast cancer and nonsmall cell lung cancer
- Response varies widely
- Major side effects include GI side effects, neutropenia and thrombocytopenia

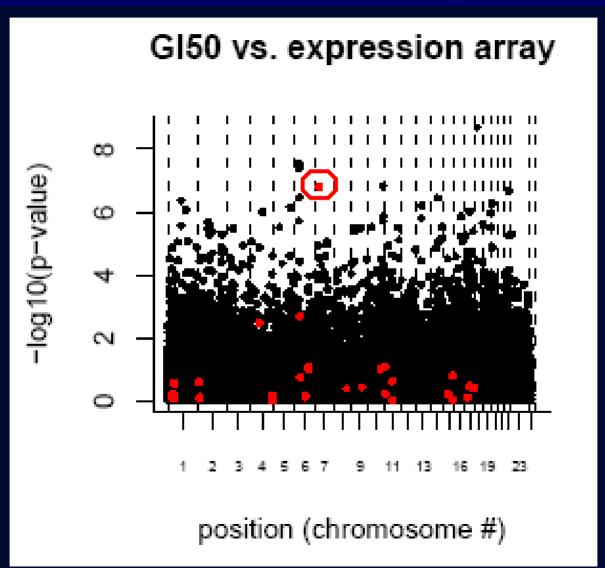


#### **Gemcitabine Metabolic Pathway**




### **Hypothesis**

Variation in gene expression across the genome might influence the response to gemcitabine




## **Gemcitabine Cytotoxicity and Variation in Gene Expression**





## Gemcitabine Cytotoxicity and Variation in Gene Expression

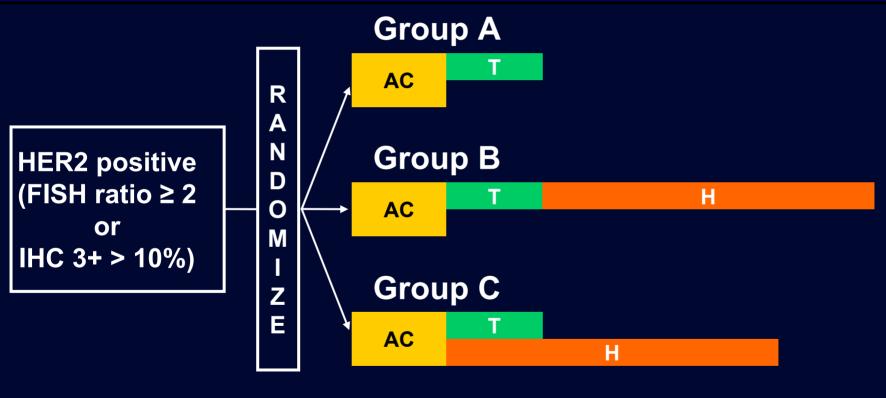




# Mayo PGRN-NCCTG Genomics Consortium

**Clinical Trials** 

N9831

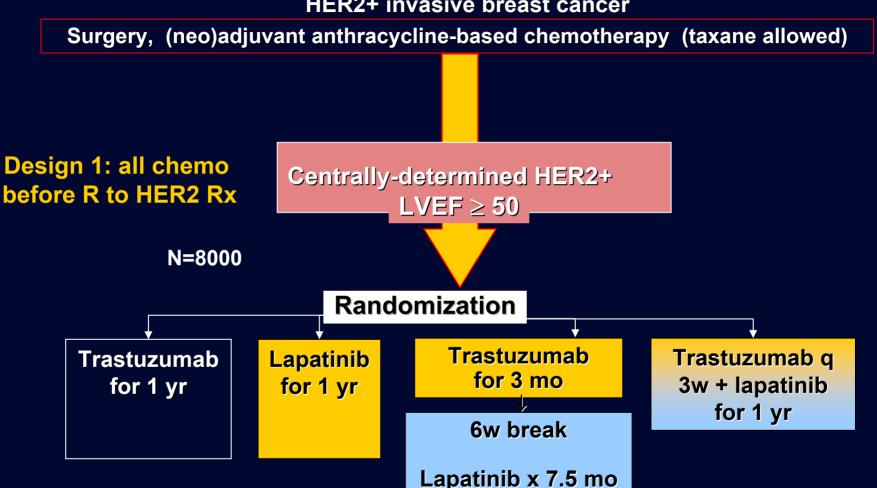

**ALTTO** 

**Others** 



# NCCTG N9831 Trial Incorporating Trastuzumab in Adjuvant Therapy

n=3,505




= AC (doxorubicin/cyclophosphamide 60/600 mg/m² q3w × = T (paclitaxel 80 mg/m²/wk × 12) = H (trastuzumab 4 mg/kg loading + 2 mg/kg/wk × 51)



## BIG 2.06/NCCTG N063D Phase III HER2+ (neo)Adjuvant Trial - ALTTO

**HER2+** invasive breast cancer



RT, endocrine Rx after chemotherapy



#### Conclusion

 The Mayo PGRN and NCCTG are in the position to conduct clinically relevant and scientifically rigorous research in pharmacogenomics of anti-cancer agents

